Adaptive Intrusion Detection based on Boosting and Nave Bayesian Classifier
نویسندگان
چکیده
منابع مشابه
Adaptive Intrusion Detection based on Boosting and Naïve Bayesian Classifier
In this paper, we introduce a new learning algorithm for adaptive intrusion detection using boosting and naïve Bayesian classifier, which considers a series of classifiers and combines the votes of each individual classifier for classifying an unknown or known example. The proposed algorithm generates the probability set for each round using naïve Bayesian classifier and updates the weights of ...
متن کاملNovel Intrusion Detection using Probabilistic Neural Network and Adaptive Boosting
This article applies Machine Learning techniques to solve Intrusion Detection problems within computer networks. Due to complex and dynamic nature of computer networks and hacking techniques, detecting malicious activities remains a challenging task for security experts, that is, currently available defense systems suffer from low detection capability and high number of false alarms. To overcom...
متن کاملAdaptive Intrusion Detection Based on Machine Learning: Feature Extraction, Classifier Construction and Sequential Pattern Prediction
* Corresponding author. This work is supported by the National Natural Science Foundation of China under Grant 60303012 Abstract: In recent years, intrusion detection has emerged as an important technique for network security. Due to the large volumes of security audit data as well as complex and dynamic properties of intrusion behaviors, to optimize the performance of intrusion detection syste...
متن کاملa lattice based nearest neighbor classifier for anomaly intrusion detection
as networking and communication technology becomes more widespread, thequantity and impact of system attackers have been increased rapidly. themethodology of intrusion detection (ids) is generally classified into two broadcategories according to the detection approaches: misuse detection and anomalydetection. in misuse detection approach, abnormal system behavior is defined atfirst, and then an...
متن کاملIntrusion detection by integrating boosting genetic fuzzy classifier and data mining criteria for rule pre-screening
The purpose of the work described in this paper is to provide an intelligent intrusion detection system (IIDS) that uses two of the most popular data mining tasks, namely classification and association rules mining together for predicting different behaviors in networked computers. To achieve this, we propose a method based on iterative rule learning using a fuzzy rule-based genetic classifier....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2011
ISSN: 0975-8887
DOI: 10.5120/2932-3883